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Modelling an amperometric biosensor acting in a flowing liquid

F. Ivanauskas1,2,∗,† and R. Baronas1,2

1Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
2Institute of Mathematics and Informatics, Akademijos 4, LT-08663 Vilnius, Lithuania

SUMMARY

This paper presents a mathematical model of the amperometric biosensor based on an electrode covered
with an enzyme membrane. The model involves three regions: the enzyme layer where enzymatic reaction
as well as mass transport by diffusion takes place, a diffusion-limiting region where only diffusion takes
place, and a convective region, where the analyte concentration is maintained constant. Using computer
simulation the influence of the biosensor geometry as well as the flow intensity on the biosensor response
was investigated. This paper also deals with the conditions when the mass transport in the exterior region
may be neglected to simulate the biosensor response assuming that the buffer solution is in intense flow
and in powerful motion. The digital simulation was carried out using the finite difference technique.
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1. INTRODUCTION

Biosensors are analytical devices made up of a biological entity, usually an enzyme, that recognizes
a specific analyte and a transducer that translates the changes in the bio-molecule into an electrical
signal [1]. The biosensors yield a signal, which is proportional to the concentration of the measured
analyte. The amperometric biosensors measure the faradaic current that arises on the electrode
by direct electrochemical oxidation or reduction of the reaction product. These devices have been
widely used in environmental, medical and industrial applications because of their high selectivity,
simplicity and low cost [2].

In the literature, mathematical models have been widely used as an important tool to study and
optimize analytical characteristics of actual biosensors [3]. We consider a system where a membrane
biosensor is used for an analysis of a continuously flowing analyte over the membrane surface.
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The goal of this investigation is to make a model involving enzymatic reaction in enzyme membrane
and mass transport inside as well as outside the membrane. Although practical biosensors contain
a multilayer enzyme membrane [4], the model biosensors containing the exploratory monolayer
membrane are widely used to study the biochemical behaviour of biosensors [3, 5].

The developed model is based on the reaction–diffusion equations, containing a non-linear
term related to Michaelis–Menten kinetics of the enzymatic reaction [6, 7]. The model involves
three regions: the enzyme layer where enzymatic reaction as well as the mass transport by
diffusion takes place, a diffusion-limiting region where only a mass transport by diffusion
takes place, and a convective region, where the analyte concentration is maintained constant
[3, 8].

Using computer simulation the influence of the thickness of the enzyme membrane as well the
diffusion layer on the biosensor response was investigated. The conditions when the exterior mass
transport may be neglected were investigated. The computer simulation was carried out using the
finite difference technique [9, 10].

2. MATHEMATICAL MODEL

A biosensor may be considered as an electrode, having a layer of enzyme (enzyme membrane)
applied onto the electrode surface. Assuming the symmetrical geometry of the electrode and
homogeneous distribution of the immobilized enzyme in the enzyme membrane, the biosensor
action can be described by the reaction–diffusion system (t>0) [3, 8]
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where x stands for space, t stands for time, Se(x, t), Sb(x, t)(Pe(x, t), Pb(x, t)) are the substrate
(reaction product) concentrations in the enzyme and in the liquid, respectively, d is the thick-
ness of the enzyme membrane, � is the thickness of the diffusion layer, DSe , DSb , DPe , DPb
are the diffusion coefficients, Vmax is the maximal enzymatic rate and KM is the Michaelis
constant.

Let x=0 represent the electrode surface, while x=d represent the boundary layer between the
liquid and the enzyme membrane. The biosensor operation starts when some substrate appears in
the liquid (t=0)

Se(x,0) = 0, Pe(x,0)=0, x ∈[0,d]
Sb(x,0) = 0, Pb(x,0)=0, x ∈[d,d+�) (3)

Sb(d+�,0) = S0, Pb(d+�,0)=0

where S0 is the concentration of the substrate to be analysed.
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On the boundary between two subregions we define the matching conditions (t>0)
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In the bulk solution the concentration of the substrate as well as the product remains constant
(t>0)

Sb(d+�, t)= S0, Pb(d+�, t)=0 (5)

At the electrode surface (x=0) the potential is chosen to maintain zero concentration of the
reaction product

Pe(0, t)=0, DSe
�Se
�x

∣
∣
∣
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=0, t>0 (6)

We assume that system (1)–(6) approaches a steady state as t→∞. A density i(t) of the
biosensor current at time t can be obtained explicitly from Faraday’s and Fick’s laws [3]

i(t)= neFDPe
�Pe
�x
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∣
∣
x=0

, I = lim
t→∞ i(t) (7)

where ne is the number of electrons involved in a charge transfer at the electrode surface, F is the
Faraday constant and I is the steady-state biosensor current.

The biosensor response is known to be under mass transport control if the enzymatic reaction
in the enzyme layer is faster than the mass transport [3, 6]. The dimensionless diffusion modulus
(Damköhler number) �2 essentially compares the rate of enzymatic reaction (Vmax/KM) with the
diffusion through the enzyme layer (DSe/d

2)

�2= Vmaxd2

DSeKM
(8)

If �2�1 then the enzyme kinetics controls the biosensor response. The response is under diffusion
control when �2�1.

3. SOLUTION OF THE PROBLEM

Problem (1)–(6) was solved numerically using the finite difference technique [9, 10]. We introduced
a non-uniform discrete grid in both directions: x and t . An implicit finite difference scheme has
been built as a result of the difference approximation of the model. The resulting systems of linear
algebraic equations were solved efficiently because of the tridiagonality of their matrices. The
digital simulator has been programmed in Java language [11].

The mathematical model as well as the numerical solution of the model was evaluated for
different values of the maximal enzymatic rate Vmax, substrate concentration S0, the thickness d of
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the enzyme layer and the thickness � of the external layer. The following values of the parameters
were constant in all the numerical experiments:

DSe = DPe =300�m2/s, DSb =DPb =2DPe

KM = 100�M, ne=2
(9)

At low concentrations (S0�KM) as well as high concentrations (S0�KM) of the substrate,
the steady-state response can be calculated analytically [3]. The adequacy of the mathematical and
numerical models was evaluated using known analytical solutions. The relative difference between
the numerical and analytical solutions was less than 1%.

4. RESULTS AND DISCUSSION

Using computer simulation the influence of the thickness of both the enzyme and the diffusion
layers on the biosensors response was investigated.

The thickness d of the enzyme membrane of a biosensor can usually be measured physically
rather precisely. The thickness � of the diffusion layer depends upon the flowing of the buffer
solution. The thickness � is inversely proportional to the intensity of the flowing. � can be estimated
experimentally [12].

4.1. The effect of the thickness of the diffusion layer

We investigate the dependence of the steady-state biosensor response on the relative thickness
of the diffusion layer. We consider a dimensionless Biot number Bi to express the ratio of the
internal mass transfer resistance to the external one [6]. Because of high sensitivity of the maximal
biosensor current to the thickness of the enzyme layer we normalize the steady-state current [5]

IN(Bi)= I (Bi)

I (∞)
, Bi= d/DSe

�/DSb
= DSbd

DSe�
(10)

where I (Bi) is the steady-state current (7) calculated at given Biot number Bi . I (∞) corresponds
to the biosensor response for zero thickness of the external diffusion layer, �=0.

The biosensor response versus the Biot number Bi was investigated at different values of the
maximal enzymatic rate Vmax, the substrate concentration S0 and the membrane thickness d .
Results of the calculation obtained at two values of Vmax: 10 and 100�M/s and various values of
the thickness d are depicted in Figure 1.

One can see in Figure 1 that the steady-state biosensor current is a monotonous increasing
function of the Biot number Bi when the response is under diffusion control (�>≈1.5) [5]. IN
is a non-monotonous function of Bi when the enzyme kinetics controls the biosensor response
(�<≈1.5). In the cases when �≈1 the steady-state biosensor current varies slightly at Bi>≈1.
At all values of the diffusion modulus �, the steady-state current varies slightly at Bi>10.

4.2. The effect of the Nernst diffusion layer

The thickness � of the external diffusion layer depends upon the nature and intensity of flowing
of the buffer solution. Usually, the more intense flow corresponds to the thinner diffusion layer
[12]. That diffusion layer is known as the Nernst layer. The thickness of the Nernst diffusion
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Figure 1. The normalized steady-state current IN versus the Biot number Bi at Vmax=100 (1–4),
Vmax=10�M/s (5–9), S0=KM, and nine diffusion modulus �: 0.18 (5), 0.29 (1), 0.37 (6), 0.58 (2), 0.91

(7), 1.15 (3), 1.83 (8), 2.89 (4), 3.65 (9).

layer practically does not depend upon the membrane thickness. In practice, the zero thickness
of the Nernst layer cannot be achieved [12]. The thickness of the Nernst diffusion layer may be
minimized up to �=2�m by increasing the flowing speed [12].

In the cases when an analyte is in powerful motion, the mass transport by diffusion outside the
enzyme membrane is neglected rather often [3, 10]. We assume that a model of the biosensor action
taking into consideration the Nernst diffusion layer describes the biosensor action more precisely
than another one where the Nernst diffusion layer is neglected. In addition, we assume that the
Nernst diffusion layer of thickness � may be neglected for a biosensor having membrane thickness
d only if the steady-state response calculated considering the Nernst layer is approximately the
same as in the case when the Nernst diffusion layer is neglected.

We introduce the relative error of the biosensor response

R(Bi)= |I (Bi)− I (∞)|
I (Bi)

(11)

R(Bi) may be called the relative error of the use of the model where the diffusion layer of
thickness � is neglected at the Biot number Bi . This function may also be regarded as a level of a
reliability of the mathematical model where the Nernst diffusion layer is not taken into account.

We investigate the conditions when the Nernst diffusion layer may be neglected to simulate
the response of biosensors accurately. To investigate the effect of the Nernst diffusion layer on
the biosensor response when the analyte is in intense flow we calculated the relative error R at
practically minimal thickness of the diffusion layer. Since the effect of the diffusion layer on the
biosensor response significantly depends upon the diffusion modulus, we calculate the normalized
response changing in a wide range both the maximal enzymatic rate Vmax and the membrane
thickness d . Figure 2 shows the results of calculation at the thickness �=2�m of the Nernst
diffusion layer.

One can see in Figure 2 that the effect of the Nernst layer decreases with an increase in the
Biot number Bi as well as in the membrane thickness d . Figure 2 shows that the Nernst diffusion
layer of the thickness of 2�m should be taken into consideration in all the cases when the enzyme
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Figure 2. The relative error R versus the Biot number Bi at the thickness �=2�m of the Nernst diffusion
layer and four values of Vmax: 0.1 (1), 1 (2), 10 (3) and 100 (4)�M/s, S0=KM.

membrane is thinner than about 50�m (Bi=50). The simulated steady-state biosensor current I
may differ even more than 30% (R>0.3) from the true current if the Nernst diffusion layer is
neglected in the cases of thin enzyme membranes, Bi�1, when the buffer solution is in intense
flow. The effect of the Nernst diffusion layer becomes slight only in the cases when the Biot
number is greater than about 50.

5. CONCLUSIONS

The mathematical model (1)–(6) can be used to investigate regularities of the biosensor response
in flowing and non-flowing analytes.

If the biosensor response is distinctly under diffusion control then the steady-state biosensor
current I is a monotonous increasing function of the Biot number Bi . In the cases when the enzyme
kinetics controls the biosensor response, I is a non-monotonous function of Bi (Figure 1).

The Nernst diffusion layer should be taken into consideration when an analytical system based
on an amperometric biosensor acts under conditions when the Biot number is less than about 50
(Figure 2).
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